Circadian rhythm of intracellular protein synthesis signaling in rat cardiac and skeletal muscles

نویسندگان

  • Shuo-wen Chang
  • Toshinori Yoshihara
  • Shuichi Machida
  • Hisashi Naito
چکیده

Intracellular signaling exhibits circadian variation in the suprachiasmatic nucleus and liver. However, it is unclear whether circadian regulation also extends to intracellular signaling pathways in the cardiac and skeletal muscles. Here, we examined circadian variation in the intracellular mammalian target of rapamycin (mTOR)/70 kDa ribosomal protein S6 kinase 1 (p70S6K) and extracellular signal-regulated kinase (ERK) pathways, which regulate protein synthesis in rat cardiac and skeletal muscles. Seven-week-old male Wistar rats were assigned to six groups: Zeitgeber time (ZT) 2, ZT6, ZT10, ZT14, ZT18, and ZT22 (ZT0, lights on; ZT12, lights off). The cardiac, plantaris, and soleus muscles were removed after a 12-h fasting period, and signal transducers involved in protein synthesis (mTOR, p70S6K, and ERK) were analyzed by western blotting. Circadian rhythms of signal transducers were observed in both cardiac (mTOR, p70S6K, and ERK) and plantaris (p70S6K and ERK) muscles (p<0.05), but not in the soleus muscle. In the cardiac muscle, the phosphorylation rate of mTOR was significantly higher at ZT6 (peak) than at ZT18 (bottom), and the phosphorylation rate of p70S6K was significantly higher at ZT2 (peak) than at ZT18 (bottom). In contrast, in the plantaris muscle, the phosphorylation rate of ERK was significantly lower at ZT2 (bottom) than at ZT18 (peak). Our data suggested that protein synthesis via mTOR/p70S6K and ERK signaling molecules exhibits circadian variation in rat cardiac and fast-type plantaris muscles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing the effects of endurance and resistance trainings on gene expression involved in protein synthesis and degradation signaling pathways of Wistar rat soleus muscle

Background: Skeletal muscle mass, which is regulated by a balance between muscle protein synthesis and degradation, is an important factor for movement to meet everyday needs, especially in pathological conditions and aging. The purpose of the present investigation was to compare the alterations of the gene expression involved in muscle protein synthesis and degradation signaling pathways induc...

متن کامل

Comparison of the Alterations of Gene Expression Related to Signaling Pathways of Synthesis and Degradation of Skeletal Muscle Protein Induced by Two Exercise Training Protocols

Background and Objectives: Skeletal muscle mass depends on the balance between synthesis and degradation of muscle protein, which changes with aging and disease. The aim of the present reserch was to examine the effects of two exercise training protocols on alterations of some genes involved in pathways of protein synthesis and degradation in order to achieve a more effective training program i...

متن کامل

Gene regulation network fitting of genes involved in the pathophysiology of fatty liver in the mice by promoter mining

Background and Aim: Non-Alcoholic Fatty Liver Disease (NAFLD) is the major cause of chronic liver disease in developed countries. In this study, we identified the most important transcription factors and biological mechanisms affecting the incidence of fatty liver disease using the promoter region data mining. Materials and Methods In this study, at first, the marker genes associated with this...

متن کامل

Effect of progressive resistance exercise on β1 integrin and vinculin protein levels in slow-and fast-twitch skeletal muscles of male rats

Introduction: Skeletal muscle is a flexible and ever changing tissue and the role of costameric proteins in its response to different stimuli is not well defined. The aim of this study was to investigate the effect of progressive resistance exercise on β1 integrin and vinculin proteins in fast and slow twitch skeletal muscles of male rats. Methods: Twelve male Wistar rats (weight: 298±5.2 gr...

متن کامل

Effect of Time of Aerobic Exercise in the Light-dark Cycle on Glycemic Control, SIRT1 Protein Expression, and NAD+/NADH Ratio in Skeletal Muscle of Type 2 Diabetes Model Mice

Introduction: Mitochondrial function is regulated by the dark-light cycle under physiological and pathological conditions. Time-dependent exercise interventions may affect metabolic health in diabetic patients by regulating hyperglycemia. However, limited data are available about the correlation between the time of exercise and the regulation of muscle circadian rhythm in diabetes conditions. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017